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ABSTRACT 

A summary of the general theory of nonlinear differertial equations 

of first order is given, with the aim of providing practical working rules 

for the analysis of technical problems, without pretense to rigor and com- 

pleteness. In general, only equations of first order are considered here. 

After a discussion of the existing conditions and the analysis of singular 

points and of the integral solutions of the few types of equations which can 

be integrated in closed form, principal analytical and graphical procedures 

for the approximation of the solutions are described. 
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IHTBDDPCnOH 

The analysis of the d°c response of single energy nonlinear circuits 
wae presented in a prerious report.* It was shown that rigorous solutions in 
closed fora could be obtained, and it was outlined that io Ud» case serersi 
concepts anc* characteristics derived froa linear analysis do not apply* 

It is now propoavd to extend the analysis to the a-c response of the 
sue circuits. This, howerer, requires the application of special techniques 
of nonlinear analysis and presents difficulties of such higher order than the 
ones prerriously set. In general, nc rigorous solutions in closed fora can be 
obtained and one has to make recourse to approximation methods. For this 
reason, before proceeding to the analysis of the a~c response, which will be 
presented in a future report, it is conrenient to sumarise briefly the prin- 
cipal methods of analysis of linear and nonlinear differential equations which 
describe the beharior of single energy systems. The following notes, which are 
mainly limited to differential equations of first order, are only intended to 
gire working rules to the student of nonlinear problems. The reader interes- 
ted in rigorous and complete discussion of the subject is rmtmrr^d to the 
Tarious excellent texts on differential equations published.** 

I.  General Characteristics of Differential Kqnations of First Ordert Exist- 
ence of Solution?, Regular and Singular Points 

A group of functions represented analytically by an expression of 
type 

F (x,y,c) - 0 (1) 

where c is a rariable parameter, is said to constitute a "family". The charac- 
teristic relationship of the functions of the family is an equation obtained 
by elimination of the parameter c between (1) and its deriratiTe 

 HjJFj • ° <«_ 
Report R-271-52, PIB-210. This is the second of a series of reports 
on the analysis of nonlinear circuits, based on the material of the 
Graduate Course "nonlinear Analysis1' offered by Dr. S. £sber »t the 
Polytechnic Institute of Brooklyn. 

See for instancet 2, Picard, Traits' d»analyse, Geuthier-Viliars 
(19°5)» H, Poincsrc', LBS methodes nourelles de la mechanique celeste, 
I. Flaaaarion, Paris (1908); Z. Ooursat, Differential equations (Sag. 
Trans.) Boston (1917); E. L. Ince, Ordinary differential equations, 
Dorer Publ. Sew fork (1927)} L. Biebexbach, Differentlalgleichungan, 
Dorer Publ* (1930)j 0. Sansone, Squasioni differensiali nel caapo reale, 
Zanichelli, Italy (191.0). 
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Such relationship of type 

* (x,y,p) - 0 (3) 

where p = dy/dx, is called a differential equation of first order. Similarly, 
a family of functions with two variable independent parameters is represented 
by a differential equation of second order. Therefore, in general, the order 
of the differential equation is equal to the number of arbitrary parameters 
upon which the family of functions depend, provided that these parameters are 
not mutually interdependent. 

The reverse process of finding the various functions of the family' 
from their differential equation is usually very difficult. In addition, it 
is clear that the differential equation may possess other integrals besides 
those represented by the family from which it has been derived. 

For example, the circles in a plane form a three-dimensional family 
of equation 

x2 • y2 • 2Ax • 2By • C - 0 (U) 

Differentiating three times and eliminating A, B, and C, one has 

itt.  »2     i 112 
y  (l+y ) - 3 y y  - o 

This differential equation is satisfied not only by Eq. (U), but also by the 
equation of any straight line in the plane, since 

11     111 
y   - y 

is a solution. 

In the following we shall investigate the problem of the existence 
of solutions in a certain domain D(x,y) (such a domain is four-dimensional if 
x and y are considered complex variables), the characteristics of various types 
of singular points, and the methods of solution of the differential Eq. (3) 
with closed form or with approximate or numerical expressions. 

Regular and Singular Points 

Given a differential equation of type (3) *nd a domain D(x,y) one 
±g  confronted with the problem* of investigating a) th« existanca of solu- 
tions of (3) at each point of D, b) the nature of such solutions, i.e. whether 
or not they all belong to a family of type (1), and c) the characteristics of 
singular points of D(x,y). 

Let us assume that Eq. (3) can be solved for p - dy/dx and that, for 
any initial pair (xo,y0) in D, there exists one and only one root 

J,»M;«^^/-«* ••>*"'*•"-""•*'' " "'' 
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P - f(x,y) (5) 

which reduces to po when r  - x<„y - y0. For greater generality we shall con- 
sider x and y as complex variables. Cauchy proved the following existence 
theorem. If, within a circle |x-xcj<h, f(x,y) i3 analytic in x and in y, 
then Eq. (5) possesses a unique solution y - y(x) i&icb is analytic within 
the circle and reduces to y0 when x - XQ. In the case of real variables, 
Lipschit* simplified the proof of Cauchy, showing that the existing conditions 
reduce to a) the continuity of f(x,y) within the rectangular domain 

|x-x0|<h        }y-y0Ub 

where hs. b/M and M is the upper bound of (f(x,y) | in the domain, and b) the 
existence of a positive number k, such that 

|f(x,y')-f(x,y)j <k|y* - y| 

i 

where y and y are any two numbers of the rectangular domain. 

The previous existence theorem is not applicable if Eq. (3) possesses 
a multiple p root for x - XQ, y • y0. In this case, Eq. (3) is equivalent to 
m differential aquations (where m is the order of multiplicity in p) and, in 
general, possesses m integrals at XQTO called singular integrals. Such a 
situation arises at points on the envelope of the family of integral curves 
(1), at multiple points of any integral curve (1) where two branch** of the 
same curve t/?uch, and at tac points where two nonconsecntive curves (1) touch. 
The totality of loci for which at least two values of p are equal is obtained 
eliminating p between (3) and the equation dt/dp -0. If E(x,y) • 0 is the 
equation so obtained, this, in general, will not satisfy the given differen- 
tial equation and, for this reason, will not be one of its integrals. In such 
case, R(x,y) • 0 is the locus of the multiple points or the locus of the tac 
points of the actual integral curves. If R(z,y) • 0 satisfies Eq. (3)» then 
it represents the envelope of the family of integral curves. 

To illustrate graphically this result, one can consider the family 
of isoclinal* obtained from Eq. (3) by letting p * const. » K. A general 
survey of the integral solutions of Sq. (3) is obtained by sketching such n 
family as a function of the parameter k. If the coordinate plane (x,y) is 

•INTEGP4L CUCVE 

Fig. 1 - Envelope (E) of the family of isoclinal curves and locus of cusps, 
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covered with enough curress it Is possible to sketch integral curves starting 
at any initial point (xo,y0) and proceeding in steps from (x,y) to x*dx,y*dy 
in the direction of the isoclinal passing through (x,y). In Fig. 1 is repre- 
sented the envelope X of isoclinal curves and indicated that it is the locus 
of cusps of the integral curves. As a matter of fact, in general, the iso- 
clinal curves have a slope different than the values of k for which they are 
defined. There follows that, in general, integral curves cross the isoclinal 
curves. However, at the envelope E, which also has a slope different than p, 
the integral curves cannot cross since there are no contiguous Isoclinal curves 
on the other side of the envelope. Consequently, the integral curves have a 
cusp or a stop point on the envelope. 

The equation R(x,y) - 0 can also include a locus of double points of 
the isoclinal family. The case is indicated in Fig. 2 where it appears that 
the corresponding curve is the locus of tac points of the integral curves. As 

/NTfOMl   CV&V£ 

/SGCI/A//U- 

lig. 2 - Tac locus (F) of integral curves, and locus of nodes of isoclinal 
curves. 

i 

a matter of fact, for each point of the curve F there are two possible direc- 
tions of the corresponding integral curves, and therefore F is the locus of 
tangency where 2 nonconsecutive curves touch. 

In order to find the locus of multiple points of the lsoclinals, it 
is necessary and sufficient that the slope of the lsoclinals, defined by 

3*   0* dy 

Ox   ^y dx 

is satisfied by two different values of dy/dx if 

Ox 
o. 

Finally, let us consider (x,y) pairs for which Eq. (3) does possess 
a unique root p, but the existence conditions are not satisfied. Such pairs 
are called singular points of the equation and, in general, are isolated. 

M\ 

• • 

ft 

i 
\ 
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They play an Important part in characterizing the behavior of the various 
integral curves in their vicinity because they ere themselves singular points 
of the solutions, i.e., points at which the solutions are discontinuous, not 
unique, or not existent. 

i.e., 
Let us assume that in Eq.  (5), f(x,y) is a rational function of y, 

<£   .   f(x,y)   -   P&Zi (6) 
dx Q(x,y) 

where P(x,y), Q(x,y) are polynomials in x,y with no common polynomial divisor 

P(x,y)   -    P0(x) • yPx(x) • y^P2(x) • 

Q(x,y)   -    Q^x) • yQjU) • y\(x) * 

• 7BPa(x) 

y\M 

The singularities of (6) are discrete and may be separated into two fundamental 
classes, the fixed or intrinsic and the movable or parametric singularities. 
The first ones arise at points x, where a) any of the coefficients \ or Q^has 
a singularity which cannot bi removed by multiplying P(x,y) and Q(x,y) times 
en appropriate function of xj b) Q(x,y) is identically seroj and c) Q(x^,y)-0, 
P(xi,y) - 0 are satisfied simultaneously by a particular value of y. 

The intrinsic singularities are connected with only some of the 
functions F(x,y,c) - 0 and arise in correspondence of values xi where such 
functions have a multiple point. For this reason, they depend upon the value 
of c, i.e., upon the initial conditions. Parametric singularities are found 
only in nonlinear differential equations) they can coexist with intrinsic 
singularities. 

For example, the solution of the differential equation 

with y(0) - y0 is 

7 - F0
/(1 - ^ 

This integral has a pole at x - l/y0. 

It may be shown that an equation of the first order and second de- 
gree of the Riceat1 type 

dx 
-    P0(x) + yPjU) • y2P2(x) (7) 

...-.-. •---    •••-• 
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cannot possess multiple point singularities. There follows that linear equa- 
tions of first order and nonlinear Riccati equations possess solutions which 
ere rational functions of the initial value y0, i.e., 

r A(x) * 3(r) 
y -   _ 

yQ C(x) • D(x) 

A Riccati equation can be comrerted into a linear homogeneous equation of 
second order with the substitution 

u' 

2 

P2(x) *-£- |"P'(X) • P (x) P (x)l ^   • P (x) F*(x)u - 0 
dx"  L       ~      J dx 

r(x,y) -fC^ 7l)  •[(x-x1)f;(x1y1) * (y-yi) f yU^)] • 

• .... 

one can write Eq. (J>) as follows: 

Painleve - Equations differentielies ordinaires. Encycl. des Sciences math. 
t. 2, V.3, 1910. 

w 

• 

f 

« P2(x) 

One obtains from (7) 

if, 
dxfc      L *     J    dx 

and the solution of this differential equation is, in general, of type 

u   -    CJUJU) • CgUjCx). 

It may be shown that the movable singular points of an equation of 
type (6) can only be poles or algebraic critical points. 

Classification of Intrinsic Singular Points 

Ve shall now examine the methods for the determination of the charac 
teristics of the intrinsic singular points of Eq. (6), and, in particular, 
those which are common zeros of P(x,y) and Q(x,y), but are not stationary 
points of either function. If (xi,y^) is one such pair, expanding P(x,y) and     >$ 
<3(x,y) in its vicinity by Taylor series 

it 

; 
1 • 

n 

» 

• > 
- •'-. **^,-- 
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dx cCx-x^ • d(y-y1) • Qj^y) 
(8) 

Xnlq.  (8), a- ££)        , b -(!£)        , c 
*x Vl 

(IS)        , d - (iS)        , «d P1(x,y), 
>* *i7i *7 ^7T 1*1 '*Vl dXXlyl *Vl 

&(**y) *r« polynomials in (x-x,),  (y-y,) of degree not less than two.    If the 
differences (x-x-),(y-y1) are made to approach aero along some arbitrary curve 

in (**y)*  P]_(x.»y)  and Q1(x>y) will vanish to an order higher than the first so 
that, in a region sufficiently small surrounding (x,y-,), Eq. (8) may be written 

approximately 

dy.   ~   »(*-*i) • b(yyi) 

dx eCs-x^ • d(y-yx) 
(9) 

Eq. (9) is homogeneous in (x-xj_), (y-yi) and, by means of the substitution 
y-71 • a(x-xi), may be reduced to one whose variables are separable, neglect- 
ing the case ad - be - 0 for which equation (9) becomes p - const., it is 
found that the characteristic of the singularity (x^yx) depends upon the nature 
of the roots «i, %2  of the algebraic equation 

i2 - (b+c) % - (ad-bc) - 0 
2 

i.e., upon the discriminant I « (b-c)    • h ad.    If A-cO,  (xxyi) is a limit 
point (focus) of the lutegral curves which ars spiral-like j if £z0 but 
ad - bc<0, (xxyi) is an actual common point of the integral curves (node)} 
if A>0 and ad - bc?0,  (xj/i) is a saddle point. 

P 

A  > O 

SADDLE 

A > O 
NODE P -4Q -0 

A   <   0 
-*-q 

FOCUS 

A   > O 
NODE 

Fig.  3 

; 
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I 
Letting 

P - -(b*c) - «(»1*«2), Q - -(ad-bc) - i^g 

one has 

?2-UQ 

•o that the previous conditions in a P, Q plane correspond to the regions out- 
lined in Pig. 3. 

It is possible to assign an index to the various types of singulari- 
ties. As a natter of fact, if in the (x,y) plane ve consider an arbitrary- 
closed curve C which does not possess any multiple points and surrounds one 
and only one aingularity, the total number of revolutions K made by the rector 
of components P(x,y), Q(x,y) in a complete circuitation of C is +1 if the 
singularity is a node or a focus, -1 if it is a saddle point. The number N 
is called index of the singularity) if the curre C encloses several singulari- 
ties, the value of N is the sum of their indexes. This number is expressed 
mathematically with the relation 

i.i- /d t^-1 ?^- L-/ rsoijwp 
2m Jc P(x,y)      2H fe   P

2 • if 

As a consequence of the previous statements there follows that if the curve C 
is an actual solution of Sq. (9), the corresponding value of N is +1, so that 
the sum of the indexes of the singularities enclosed must add up to +1. 

The subject of singularities of a differential equation of first 
order will be discussed further in a subsequent report, to consider cases in 
which x and y are both functions of a third variable, the time. However, we 
shall indicate here briefly the case of singularities of higher order. These 
correspond to points (x1, y1) which are not only common seros of P(x,y) and 
<3(x,y), but also stationary points for them. For example, the equation 

. - 2£ 
admits the general integral 

y2 - x>*C 

This consists of a system of cubics of which the curve yc - x has a cusp at 
the origin. 

The equation , 
e -      Bxy3 

*   - J» • 6xV * ? 

..  ...- .-••• • * * •    ' -"' 

\ 
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For an equation of type (6), nacessary and sufficient condition of 
integrability is that 

P(x,y) dx - Q(x,y) dy - 0 (11) 

be an exact differential, i.e., 

U • is - o 

The solution is then expressed with 

/•* »y /   P dx    +    /JQ dy    -    c 
xo yo 

The condition of integration is always verified when the variables are separ- 
able, i.e., P - P(x), Q - Q(y), or vice versa. 

If P(x,y), Q(x,y) are homogeneous functions of x and y of the sane 
degree, the separation of variables can be achieved with the substitution 
y - sx which transforms (10) into 

[P(l,«) + z  0(1,*)] dx - x Q(l,«) dt - 0 

More generally, if (11) is not an exact differential, it may be transformed 
into one by multiplication with an integrating factor |i(x,y), such that 

u( P dx = Q dy) - 0 

is a total differential. There exists an infinity of integrating factors which 
are solutions of the partial differential equation 

Mv*)  „ *ML .o \ 
^7 ** ; 

i.e., •' 

?\t  • Qh±  •^(i£* IS) -o (12)    j 
"iy     *x    "iy  *x •• 

The solution of (12) is in itself a problem more difficult than the solution j 
of (U), but fortunately ws only nssd to find a particular integral of (11) •> 
and this, in certain cases, can be found easily. As an example, consider any j 
linear differential equation of first order 

& • a/x) y - b (x) (13) 
dx    x        x 

In this case we have P - b, - a,y, Q - 1, and Eq. (12) becomes 

V" 
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(*, - v> £ •» —^ • Li 

*X 

A * -.   ieular integral of this equation is |i - ji(x) obtained from 2K = ^ta, 
i.e., dx 

n(x)  -  C 
With the use of this integrating factor, Sq.  (13) is transformed into the 
exact differential 

/ajdx /*idx 
e (b,  - a^) dx - e dy « 0 

whose general Integral according to (12) is 

V^dx 
7 - 70 - e 

x /a,dx 
C • /     (-^y • b) e   -1     dx 

i.e.. 
-/a,dx        -/a-,dx      x /a,dx 

y - C e      """     • «       '       /   b,(x) c dx 
x_    X 

In the case of the nonlinear Bernoulli equation 

0 -*   • a^x) y + a^x) yn 

dx 

£q. (12) becomes 

(1U) 

<1 y + V^ ^ *^ • li(«! • n^ y*"1) - 0 
"ix      dx 

A particular solution of this equation is not easily found.    However, Eq.  (lU) 
can be transformed into a linear equation by means of the substitution z - yl-n 

and becomes 

^   + (l-n)(a1t • an)    -    0 

The Riceati equation 

a: • 
dx *ly + *2y (15) 

V 

1 

which contains the Bernoulli equation as a particular case, cannot be inte- 
grated by a general method. Its solution is simplified, however, if any 
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(b. - V) ht  •   Ifc   -   „ ^ 
1       *     *y ^x ^ 

A *"\rticular integral of this equation ia \i « n(x) obtained from ^ - jia, 
«  « dx i.e., 

»i(x) - e'  -1- 

With the use of this integrating factor, Sq.   (13) is transformed into the 
exact differential 

/a,dx ya,dx 
e (^ - a^y) dx - £ dy « 0 

whose general integral according to (12) is 

-Aidx x /a-dx 
y » yQ - e     x    <C * /    (-a1y • b) e dx 

i.e., 
-/a,dx       -/a,dx      x /a,dx 

y-Ce     X     •«     X       /   b.(x)  e   -1     dx 
*o   1 

In the case of the nonlinear Bernoulli equation 

& • a1(x) y • an(x) 7
a   - 0 (Hi) 

dx 

Eq. (12) becomes 

(«! 7 • V*) 1* • ^ • n(«, • na y""1) - 0 1    n   ^x  *x    ^   ^ 

The Riceati equation 

& • a, y • a. y2 - b, (15) 
dx    •L     ' 

which contains the Bernoulli equation as a particular case, cannot be inte- 
grated by a general method. Its solution is simplified, however, if any 

I 

A particular solution of this equation is not easily found. However, Eq. (lU) ,1 
can be transformed into a linear equation by means of the substitution z - yl_n '] 
and becomes !! 

S* «• (l-n)(a1t • an) - 0 <j 

V 
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particular integral y* is known. As a matter of fact, letting y • y**s ths 
equation is changed into the Bernoulli type 

^ *    (2y*a9+ a,) z • a^z2 - 0 
dx        2   x     -2 

Passing now to other possible forms of Eq. (3)» a solution can be 
obtained at least theoretically when *(x,y,p) is a polynomial of degree n in 
p. As a matter of fact, writing the equation in factorized form 

*U,y>p) - (p-<1)(p-<2^ — (P-SI^ " 0j     ^l6^ 

one can show that the general integral is the product of the integrals of the 
equations obtained equating to zero each factor of (16), 

Other cases of interest are those in which *(x,y,p) can be written 
in one of the forms 

x - fx(p) (17) 

y - f2(p) (18) 

y - xf3(P) (19) 

The solutions of these equations can be written in closed parametric form in 
terms of p. One has respectively 

x - f^p), y - c + /pf'(p) dp (17») 

y-f2(p), x-c*/ifj(p) dp (18-) 

y - xf3(p), x - c exp )j t\  (p) dpi 
P - f3(p) 

(19') 

Similarly, when *(x,y,p) is linear in x and in y, of type 

*(x,y,p) - x"f(p) - y • t(p) 

with *{ (p) ^p, the solution is obtained in parametric form as 

i whsrs fi(p) is the integral of the linear equation 

£E „£M X -   J'(p) 
i dP  P-Tf(p)      P-f(p) 
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and f5(p) - xf(p) *<f(p). 

On the other hand,  the roots p^ of 

P-Tf(p)    -    o 
satisfy the condition dp/dx - 0 and furnish a number of singular solutions of 
type 

y - xf(Pl) • $  (p±) 

In certain cases a given differential equation can be transformed 
into an integrable form with a substitution of variable. For instance, the 
transformation of Legendre 

x - P, y - IP - Y, p « X 

transforms 4(xjy,p) - 0 into the equivalent equation 

*(P, XP~Y, X) - 0 

III. Methods for the Determination c.f Approximate Integral Solutions 

Unfortunately, in the great generality of cases, a rigorous solution 
of a nonlinear differential equation cannot be found and for this reason it is 
necessary to have recourse to methods of approximation. These generally apply 
only to a differential equation of type (f>) 

p - f(x,y) 

and in a domain D in which f(x,y) is analytic in x and y. They provide the 
solution as a limit of a sequence of functions, or as sum of an infinite 
series, or as a numerical expression. 

a)  Method of Successive Approximations (Iteration) 

If XQ, y0 is a point of the domain D, the solution of (5) satisfies 
the integral equation 

xo 

where y(£ ) is unknown and x is chosen within D. Let us consider the sequence 

* 

• 

o 

\ 

• i 

X i 
y- jQ*/  f(^,y(f)) d| (20)    *) 

l^ 
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• 

' ;. 
i 

V 

B 

y2  -  y0 - /
x f(t ..yx) *! 
X 

o 

It can be shown that this sequence possesses a limit for n-^co, and that this 
limit is the desired solution of (SK While this procedure is very general, 
the convergence of the sequence obtained is rather slow. In order to improve 
the latter, in special cases modifications can be introduced in the method. 
Suppose, for instance, that Eq. (5) is of the form 

P - fx(x,y) • f2(x.y) (21) 

where  e f?<<^l "i**1^ the domain D.    If a solution of 

p   -    fx(x,y) 

can be found, one assumes it as zero approximation and obtains, the first ap- 
proximation solving 

P - *i(**7) • e f2(x,y0) 

Similarly, the second approximation is obtained as solution of 

p - fx(x,y) • e f2(x,y1) 

and so on. 

Another modification of the method is obtained considering the equa- 
tion 

dx 

dy f(x,y) 

which sometimes may be integrated more readily.    One has similarly 

x - x„ • /7 -  df - 
y0 r(x(f), p 

(22) 

o 

and correspondingly the approximation sequence is 

v   A * 
*„•/ 

y„ f<v f> 
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*9   "   X« * /    l  
yn '(«,.f> 

b)  Method of Integration in Series (Perturbation) 

While with the previous method the solution is expressed as limit 
of a sequence, it can also be expressed as sum of a converging infinite series. 
In a domain of analyticity of f(x,y) surrounding the initial pair (xQ,y0) one 
can compute all successive derivatives of y at (xo,y0) by means of the given 
differential equation. Therefore, by Taylor series, one has 

y - yQ • *o (*-*o> + y0' 
if^+ ••• (23) 

j 
In practice the computation of successive derivatives may be rather cumbersome. 
If one accapla the principle tnax y can be expressed as a power series, its 
coefficients can be obtained by substituting such an expression with indeter- 
minate coefficients for the dependent variable in the differential equation. 
Since it must make the equation an identity, onfe can readily obtain recurrence 
relations between the coefficients of the power series by comparing terms in- 
volving the same power of the variable. 

The method of solution in series may be applied also in the neighbor- 
hood of some types of singular points of the equation, namely, those in corres- 
pondence, of which the solution is expressed in the form 

(2U) y - (x-xQ)
r ^ • ^(x-x,,) • a2(x-xQ)

2 • ...J 

•v i » 

with *.0T~0  and r any real number. To investigate the possible existence of 
such type of solution, one substitutes the series (2U) into the differential 
equation and equates to zero the coefficient of the term of lowest degree in 
(x-x0). If this coefficient is independent of r, the expression (21j) cannot 
be used to represent the solution in the neighborhood of (xo,y0). Otherwise, 
one determines r from this equation and then proceeds to the evaluation of 
all other coefficients. 

f 
When the differential Eq. (5) can be written in the form 

p - f(x,y) - f^y) + e f2(x,y) 

with e f2<-<^l» 1* is possible to express the solution with an infinite series 
whose terms are not simple powers of the independent variable, but more general 
functions of such variable, simultaneously defined in a certain interval of x. 

%L For this purpose, it is observed that in the given domain f(x,y) can be con- 
f aidered an analytic function not only of the (complex) variables x and y, but 
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also of e;  therefore,  the solution can be expressed in a ssrias of powers of 

2 
y - yQU) • e yx(x) • e y2(x) • (25) 

Substituting the expression (25) into the differential equation, one obtains 

yo * eyl + 6 y2 +°"* " fi(xi»y0"*eyl+'"^ * ef2(x'Veyl*''' 

Now, equating the terms of same degree in e, one obtains a system of recurrence 
equations which permits the determination of the functions y0> y]_, yg  
For instance, y0 is the solution of the equation 

y0 - ^(xjy) 

This special case of the method of integration by series is known as "perturba- 
tion method". A close analogy bxists between perturbation and iteration 
methods; depending upon the particular differential equation, one or the other 
may b« more convenient, but in general both become rather cumbersome after the 
second or third approximation„ 

In the application of each of the methods previously discussed, it 
is necessary to satisfy the given initial or boundary condition. Since the 
equations here considered are of the first ordert  this condition reduces to 
one relation, for instance, the initial value y(0)„ In addition, if it is 
known that the equation possesses a periodic solution (in response to an ex- 
ternal driving term, or as free solution of a degenerate system), a periodic 
condition of the type y(x • 2n) « y(x) must be also satisfied. A degenerate 
system is one which is represented by a differential equation of second order, 
which, on account of the relative smallness of the coefficient of the second 
derivative or of that of the function y (spring constant) reduces actually to 
a differential equation of first order. A system of the type 

dx 
f(y) - o (26) 

possesses a periodic solution if the corresponding path in the plane (dy/dx, y) 

ffy) 

-*~y 
t Fig. k  - Multivalued Function 
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is a closed curve. This Implies that f(y) must be a multivalued function 
(Pig. U) since, for some values of y, f(y) will assume at losat two different 
values on the solution path. Thus, the function f(y) in general will be non- 
analytical^ including radicals or discontinuities.* 

, By means of the methods of approximation described, the solution is 
' . expressed as an infinite series. In order to satisfy the initial condition 

it is sufficient to impose that the first term of such a series assumes the 
required initial value and all ether terms assume correspondingly zero initial 
value. In addition, in order to satisfy the periodicity condition, when this 
is required, one must equate to aero all the coefficients of terms in the series, 
possessing a periodicity other than the required one. 

• 

c)  Method of Sinusoidal Analysis 
' | ,| I I.I     .1   • I II II ..III     ... ...        II        I.     • 1L   MM I  

I 
When it is known that the solution presents periodic  terms of a cer- 

tain frequency,  one can express y as a Fourier series in x and determine its 
coefficients b^  direct substitution into the differential equation.    By this 
procedure,  the integral of the nonlinear differential equation is obtained 
from the solution of a system of equations which are not of differential type, 
but are of algebraic or transcendental type depending upon the nature of the 
nonlinearity existing in the  original differential equation.    For instance, 
given 

&   -    hy   -    f(y.t) (27) 
dt 

where it is known that y is & periodic function of t, one can assume in general 

oo 
y    - ^>       (a    sin nort + b    cos neat) 

n-1 

CO 

y' 

There follows that 
GO 

I 
r 
! la f,       - ~   /nf(y,t)  sin neat dwt 

TT 

1 

-41 

Jl 
f<-,_    - — /   f(y,t) co 8 ncot diot 

£Xl n -n 

Ap.dronov,  Chaikin ~ Theory of Oscillations,  Princeton Un.  Press 19U9.  p.  138, 
Chapter IV. 

M* 

•   /•      (con a    cos ntot - an b    sin not) ; 
n»l :'.• 

".1 

•> 

f(y,t)   - 2— (fTn   sin nwft  *   *2r\   C0S  na>t^ 1 

w.iere ij 
1.1 
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Clearly the solution of the equations obtained by identifying coefficients 
of isofrequential terms is impossible in the general case. If, however, it 
is permitted to assume that only a limited number of harmonics exists, then 
the equations may be simplified conveniently to permit the solution for the 
values of the various coefficients of the Fourier series. 

In particular one might combine the foregoing procedure with a pro- 
cedure of perturbation*. For instance, one assumes that us first approximation 
y can be expressed by means of its fundamental term only, i.e.,, y - ai sin oat • 
bi cos tot. Consequently, Eq. (27) reduces to 

where 

SE   - hy - f,,   sin cot 4- ?2i  
cos M* 

dt x 

f_.  » i   /   f |a, sin cot + b>,   cos cot,  t      sin cot dcot 

-l        n     i- -. 
f21  « —   /   f    a, sin cot •»• b-,   cos cot,  t      cos cot dcot 

Letting now y « Re Y, where Y - (bx * ja1)  e
ja5t - A eJolt - A ej    e*° ',  one 

can write equivalently 

i.e., 

fjeo- hi T - N [ A] (28) 

I* 

\ 

If the nonlinear term f(y,t) contains also derivatives, the resultant ex- *| 
pression N will be a function of A and Jcc, i.e., N(A, jco). •.'! 

1 
The term N(A, jco) is called describing function of the nonlinear ex-      if 

pression f(y,t)$ it is seen that it is a function of the complex amplitude '.Jj 
X- AeJ* end of the frequency co. If f(y,t) is linear- in y, the corresponding      fJj 
describing function becomes the transfer function. In general, we have 

I 
f(y,t) - Re N(A,   jco) I - u*(y,t) (29) 

or identically 

f(y,t)  - |N(A,   jco) Y • N(A* jco) T*J   - n*(y,t) 

B. V. Bulgakov - Periodic processes in free pseudo-linear oscillatory sys- 
tems,  Jour. Franklin Inst.s Vol.  235,  June 19U3, p. 591-616. 

E. C. Johnson - Sinusoidal rnalysis of feedback control systems containing 
nonlinear elements.    Trans. AIEE, July 1952. 
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The present procedure of approximate solution is valid when in (29) one can 
consider |i*(y,t) very small and neglect it in first approximation.    Then the 
amplitude AeJ^is determined graphically or analytically solving 

> - h    -    N(A,  in). 

A better approximation to the actual solution can be obtained when the differ- 
ence (29) is small with respect to the other terms in the differential equa- 
tion, by writing 

^ - hy - Re N(I, » Y - ji*(y,t) (30) 
dt 

In this relation u. is a coefficient indicative of smallness. Now following a 
perturbation method we imagine to expand the true solution y into a power 
series in \i,  i.e., 

2 
y- y0 • wi*^ y2* ••• 

The first approximation is obtained as Indicated beforehand letting \i  - 0. 
To obtain the second approximation, one differentiates Eq. (30) with respect 
to u. and then lets p. - 0. There follows 

dyi - 
-± - h7l  - Re H(A, jco) Yl -  *(yQ) (3D 
dt 

Expanding *(yQ) in Fourier series one has 

•4-CD 

°   2 £-7^-   n 

where 

*n-~ /n*^ •"*"*** 

There follows for the second member of (31) 

— .^-1.1(^.1    ir# 
t dt 2°? ^c55 n 

• OD 

jncat 

n^0,+ l 

Now the condition of periodicity requires that *^ - *_^ - 0. This condition 
is already verified, however, on account of (29). Therefore, the term of 
second approximation is obtained as 

c   n-2      c   r^X 

\ 
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II contains a new arbitrary constant A which must be determined on the basis 
of the initial condition, as indicated previously. 

IY. LLnear uift'erentlal Bquatlona with Variable Coefficients 

The methods of solution described for nonlinear equations can be 
used also in the case of linear equations. However, in the latter case, since 
superposition applies, it is possible to make recourse to special methods of 
analysis, based on the use of the Green's function and of linear transforms. 
For greater generality we shall consider a linear differential equation of 
order n of type 

ran(t)p
n «• ... • a1(t)p • a0(t)l y(t) - [bm(t)p

m • ... • bQ(t)] u(t) (32) 

which we can indicate for brevity with 

L(p,t) y(t) - k(p,t) u(t) - r(t) (33) 

where u(t), r(t) are known functions (driving terms). In general, we also have 
a set of n linearly independent relations in y( t) which represent the boundary 
conditions. The system 

L(p,t) y - r(t) 

V« - *k 1-1. 2...n       <3U) 

might not possess a solution not identically zero which together with its n-1 
derivatives is continuous throughout the interval (a,b) of the independent 
variable. However, one can always find a function whici formally satisfies 
the system (3U) but violates at least in part the condition of continuity, Tn 
particular when r(t) - 0, TT^ * 0 (homogeneous system), such a solution is 
called Green's function G(t, ?). Such a function is continuous and possesses 
continuous derivatives of orders up to and including n-2 when ait— bj in addi- 
tion, it is such that its derivative of order n-1 is discontinuous at a point 
^within (a,b), and presents there a jump upward l/a^t)! finally, it satisfies 
the given system at all points of (a,b) except at t - t. 

11 G(t,t) is a solution of 

L(p,t) y - 0 

u±(y) - 0 i - l...n (3^ 

then an explicit solution of the nonhomogeneous system 

L(p,t) y - r(t) 

u±(y) - 0 i - l...n (36) 

\ 
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is 

y(t) -   /bQ(t,^ r(r) d^ (37) 
a 

Ths solution of the more general nonhomogeneous system (3U) is 

y(t) -   /  0(t,t)r(?)«* r 0((4-) • ... • fn0n(+) (38) 

where G.(t) are the unique solutions of the system 

L(0±) - 0 

u,(a±) - o 
Ui*°i* " 1 J - 1 •• i-lfl*l ..n 

(39) 

When the equations of the boundary conditions Ui(y) * o^ are expressed in 
diagonal form 

y(v)(o) - y_      v-0 .. n-1 
• 

s.' 
the latter procedure provides as functions Gi(t) the solutions of 

L(p,t)y - [an(
o)yi-l + — * Vi+l

(o)yo] 0 ^Ht) CUO) 

Therefore,  in this case, the final solution (38) may be considered as corres- 
ponding to a system 

U?,t)y - rUr) • an(o)yjnol(t) •  fan(o)y1 • •tt.1(o)y0"| Jn"2(0 • 

• ..* + |«n(o)yn_1 • ••• • a1(o)y0Hi)(t) 

(Ui) 

U.(y) - 0 i - 1.   ..n 
I * 

In general^, the rigorous solution of a variable linear system is not known. 
Approximate expressions for it can be obtained by application of methods of 
iteration or perturbation. For instance,, writing the system (3U) as 

L^Pftfr - L2(p,t)y + r(-f) 

\(Y) - ?±(y) • t; (h2) 
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where parts of a differential expression and of the boundary conditions have 
been transferred to the right hand side of the equations, one can determine 
uniquely a sequence of functions 

y0(t), yx(t) ... yn(t) ... 

where yQ(t) is such that L2(y_) is continuous in (a,b) and Vi(yo) •**• finite, 

2nd y|(t),...2'_(t) satisfy the recurrence relations 

w-vwn    i.i....      (U3) 

One should observe the relative arbitrariness of choice of yo(t). Another 
iteration method* consists in replacing the variable coefficients in L(p,t) 
with their mean values in the range (a,b) of the independent variable, Eq. (^3) 
is then written _ 

L(p)y - k(p,t)u(t) + AL(p,t) y 

where 

L(p) - anp
n • .. • aQ 

tt(p) « [Van(t)] Pn + — + [vS**?] 
Starting with yo(t) equal to the solution of 

L(p).y(t) - k(p,t) . u(t) 

one institutes recurrence relations of type (1*2) for the Eq. (l;3). 

H(s,t) -/ W(t,TT) e"8(t"i:)dr 
,t 

o 

So A. Schelkinoff, M. C. Gray - B.S.7.J., Vol. 27, April 19U8, p. 350-36U. 

The investigations of variable linear differential equations can        V 
also be carried out in the complex frequency domains. However, direct trans-      'J1 

formation of (32) leads, in general, to another variable linear differential 
equation in which order in p and degree in s are interchanged with respect to 
Eq. (32). For this reason, in general, the new differential equation is not 
easier to integrate than the original one. However, one can find the Green's 
function of (32) or more generally the impulsive solution of (32) W(t,t) when      |> 
u(t) • &(t) and transform it into the complex domain by means of 
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•   ! 

sfr • 

•    . 

Mi 

mi. 

It may be shown    that the general solution of the systems (36)  can be expressed 
by means of 

y(t) - -JL   / H(s,t).U(s)  e8tds 
2nj     c-joo 

where the product H(syt).U(s)  should be considered as the frequency domain 
operation correspording to the time domain integration 

H(a,t) - /   W(t,tf U(*)  dTT 
o 

which is the analogous of (3?)0 

Recapitulating, the procedure of solution of Eq. (32) in the time 
domain consists of finding the Qrean'a function Q(t,^) [or more generally, the 
impulsive response W(t,f)3 and then finding the total solution y(t) by applica- 
tion of the superposition integral in one of the forms (37) or (38). In the 
frequency domain, on the contrary, one finds the corresponding transform H(s,t) 
of the Green's function (or of the impulsive response) and then obtains the 
transform of the total solution y(t) by multiplication of the transforms 
H(s,t) and U(s). In the latter process one uses standard Laplace transform 
tables, considering t in H(s,t) as a constant parameter. It is aJ so possible 
to extend to the analysis of variable systems many concepts familiar to fixed 
systems**; for instance, for the case of variable networks one can extend the 
concepts of impedance, admittance, gain, and various theorems of linear fixed 
circuit analysis. 

In order to find the function H(s,t)y which might be considered as 
the system function of variable systems, one does not have to find first the 
impulsive response, but can solve directly the given differential equation in 
the variable H(si)t). For this purpose one applies familiar rules of linear 
differential operators* letting in (32) u(t) - est and, correspondingly, 
y(t) - H(s,t).ast. It is found 

at 

and equivalently 

L(p,t)   . H(s,t)   e 

L(p+s, t)   . H(s„t) 

at 

Equation (kh):. when written out, reads 

"l VfyejtQ 

nl n 
i_ 

*.n P
n* 

j 

U(a,t) 

"*a 

k(p,t) e 

k(s,t) 

p+L(s,t) H(s,t) - k(s,t) 

(Ul) 

(U5) 

* L. A. Zadeh - Proc. I.R.E., V0I.3B, 1950, p. 291. 

** L. A. Zadeh - J.A.P., Vol. 21, Nov. 1950, p„ 1171, 
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I I 

It should be observed that Eq» (U5), in general, is not easier to integrate 
than Eq„ (32) since one has to use the same methods of iteration or pertur- 
bation mentioned previously. For instance, in applying the iteration pro- 
cedure. (U2) one might choose as starting function y0(t) the function Ho(s,t) 
defined as 

H(s,t) - Ziltll 
°       L(s,t) 

which might be considered as first approximation to H(s,t) when the coef- 
ficients a>(t) of L(p,t) do not vary appreciably over the duration of the im- 
pulsive response. This method corresponds to replacing the differential equa- 
tion (US) with 

L(s,t) . H(s,t) - K(s,t) - Y" I     >L<S**> p4 H(s,t) 
J-l H       w 

where all derivative terms have been moved from the left to the right hand 
side.    The recurrence Eqs.   (U3) are correspondingly written 

n . 
L(a,t)   . H(s,t) - K(s,t) - >_   i     U£*£l p> H      (s,t) 

7.  Some Examples of Application of Methods of Approximate Integration 

In order to show the technique of application of mothcd3 of approxi- 
mate integration we shall work out as examples the solution of some differen- 
tial equations. For the purpose of checking the order of approximation ob- 
tained, we choose first a linear differential equation which can be also 
solved rigorously. 

m-: 

Specifically, we consider the linear differential equation 

dt 
• [a + jbs(t)J y - I (U6) 

where s(t) - sin cot, Ocb-^a , Its rigorous solution is known 
and asymptotically (steady state) ia given by the particular integral 

<   t 

m m e-at-jb/s(t)dt y* eatfjb/s(t)dt 
= 00 

dt 

Using the Fourier series expansion 

c-j - cos cot 
+ 00 

H>° '„ © « b%    jncot 
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one has 

/t   e
at~' S cos cot dt _ /Vfc JM-J)n      (bj  ejncat dt 

-00 -00 - co 

Therefore,  the asymptotic solution of (U6)  is written 

b * Incut 
CM) 

The latter expression can be modifiwd if one applies the relation 

•oo 
Rj - cos cot m  J2 j 

-00 

n   (b}  jmcot 

There follows that (U7) can be written equivalently 

\  ra-n j (b}  (b} e  
m  n a • jnco 

This expression can be ordered in the form of an exponential Fourier series 
of type 

•CO 

y(t) 
=co °ke j*flt 

where 

0    -    i-/ny(cot)  e-Jk0)t &*t 

We have,  for instance, 

°. -JZ r i** >. <=> J» $ m      n 

8in(tHn)n 

(itH-n)n (a+jneo) 

Since in this expression 

3lnfo*n)« ,   J      ±fn¥n     Ifw 

(iftfn)n ]]_ |»o 

(U8) 

there follows that m - -n and 
•oo 

o Z.—      n    vco'       , . -oo a+,jnco 
(U9) 
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W: 

To derive this formula we have used th* relations 

J"2n - (-1)°,    Jn • J.n    -    (-Dn Jn
2 

Equation (U9)  can also be written 
m 

2 1 Q    -  J o        o 
1        r    ,2 2a 
a   +4   Jn     T— * JT a    • n 

On the other hand, more ganerally we have 

T7 
CO 

1     /•*   /  ^  -$"&* u.       >     /     u11-11   T f*>\   T /bv      sin(m+n-k)n - -/  y(«*)«        **-£Lj       J,(3) JB(S) \       ' 
(a+jnu)n(«M>n-k) 2n ~n m     n 

Since 

sln(m+n-k 

(m+n 
12^^-1°    if    mn-kl 

there follows m+n - +k and 

•oo 
,k-2n \-T r-Ws>u» 

-co a+jnco 

In particular 

Vi 
a 

oo 

• J 
-Wa-*°>*Jl+n 
 2 TT~ a   • co   n 

In the coefficients of the series (U8), there appear Bessel functions of first 
kind, of argument ^ - b/co where b/co ^<1. As a first approximation one can re- 
place them with the limit value 

lim J (^)    - 
sn 

n nl 2 n 

J  (9}-*.l  .       J (t)-*S- 
oi- '        n% >' ' 2 

We shall now derive the approximate solutions of equation (U6) obtained by 
application of methods of iteration and of perturbation. 

i 

' 
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Method of Iteration.    We write Eq.  (u6)  as follows 

&*> • ay(t) - 1 - jb s(t) y(t) 
dt 

Operating the change of variable bt - f, there follows 

d_ _ _d dj; . b d_ 

dt   d\? dt 

and Eq. (50) becomes 

dt 

(50) 

b 2- y(*) • ayC*) - 1 - jb s(x-) yCO 
dT 

i.e., 

— 7 • -y 
dT        b 

- - J a(T) y 
b 

By assumption   |s(t)|il  and we assume that for our purposes the term s(t).y 
can be considered small.    Letting 

y(.t)    -   yQ(t) • yx(t) • y2(t) • ... • yR(t) • .... 

where yn(t) is of order of |s(t)|n, substituting into Eq. (50) and equating 
terms of the same order, we hare the system of linear differential equations 

v + — y »o  . 'o 
o 

1 

b 
(5D 

yl + -yl -J •(*) 7, (52) 

y2 *  y2 " "J 8(T> yl (53) 

From Eq. (51) the steady state solution is 

1 

b 

There follows from (52) 

x  b -1        b 
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i»e.> a />• 

v (t)   -   -i *-!_/ , lr3(r) df (5U) 1 a 

Substituting (5U)  into Eq.  (53), we have 

- ±1 
y2 

+ £y2   "   -s(t)l-i-/e  b   s(r) d^ 
. a v a?^ 

There follows 
- -r • •? 

y2(t)    -    - «_J_/ .8(T) /e   b    s^d^d* 

etc.    For instance,  if 3(t)  - sin tot • sin £  T, we have 
b 

-(t) - -j ^-/ e ST.in ferdT - -J a sin cot - a, cos cot 
b ° — (a   • to ) 

b 
There follows to the first approximation 

_/.-, ~ 1       . b sin cot       . co b cos cot 
Tit) - yQ • 7l - - - J    g       2   • J       8       g 

a*co b(b    • co ; 

2 
/. \            =b                      a b cos 2cot + 2cob sin 2cot 

yoVW   "  5 5— •     5 5 5 IJ     • 
* 2a(a<i • a

d) 2a^V • «r)(a* • U»") 

cob(ab sin 2tot - 2cob cos 2cot) 

2a(a   • co )(a    • Uco ) 

Therefore, the second iteration brings a contribution to the dc terra and, in 
addition, terms of second harmonic. 

Method of Perturbation. In order to apply the perturbation method in Eq. (U6), 
we multiply the perturbation term -.jbs(t) y(t) by a .where u. is &  parameter 
indicative of the order of magnitude of the perturbation term.  At the end of 
our computations we shall replace it with one. 

In this analysis no study is made of the convergence of the series 
obtained as a solution. Following the usual procedure, it is assumed that, 
even if the series obtained are not convergent, the first terras give a result 
close enough to the desired correct solution. 

n 
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Now we expand y(t) into a power series in terms of \i 

o n       nl 

Replacing this series into Eq. (U6), we have 

J £ yn(t) • - ^ yn(r) - i - jn»(t) J *" 7n(t) (55) 
x *i*       b 0 nl.      b        0 —JT • 

Now letting \x • 0, we have the equation of the zt.ro approximation 

ijn • f r.w • i (56) 

Differentiating Eq.  (55) once and then letting y. - 0, we have the equation of 
the first approximation 

7xm • - y2C*) - - j •(*) y0W (57) 
b 

Similarly, differentiating twice Eq. (55)  and then letting \i - 0 we have the 
differential equation of the second approximation 

*2 * I y2    "    °^ 2 SW 7X(X) (56) 

It should be observed that Eqs. (56), (57), and (58) are similar to Bqs. (5l)> 
(52), and (53) of the iteration method. The same solutions apply in this case 
also. 

Other Methods of Iteration. The given differential Eq. (U6) may be written 
in the form 

y(t) -—i  - —1  y'(t) 
a+Jbs(t)    a+Jbs(t) 

and solved by iteration assuming 

y  .     1     .   L__  y 
n  a+jbs(t)    a*jbs(t)  n"1 

As solution y    one assumes o 

yo 

1 

a+jbs(t) | 

\ 
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Then there follows 

y.(t) - —i  •     ^im 
a+jbs(t)    [a*jbs(t)]3 

and 
2 _.2, 

y (t) •   
1    +    Jba'(t)  _ 3b* a'*(t) *  b[a+Jbs(t)]js"(t) 

2    a*jbs(t)    [a*jbs(t)]3        [a • jbs(t)]? 

For instance if s(t)  - sin cot, we hare 

y2(t) i     • Jb  M C°8  mt        • 
a+jb sin cot (a*jb sin tot)3 

2 2       2 2 , 3g» b cos cot - jb(a+jb sin cot)a> sin cot 

(a • jb sin cut)5 

Another procedure of approximate solution is obtained by writing the differen- 
tial equation in integral form 

y(t) - t - /t(a • Jbs(t) y(t) dt 
o 

Successive solutions are obtained by iteration writing 

7n - t - / " fa • jbs(t)] yn_1 (t) dt 

There follows 

y0 - t 

?i    "    * - /    Ca • Jbs(t)] t dt 

y2   -    t - /    [a • jbs(t)] At2 - /*  [a + Jbs(t)]  t dt V dt 

For example, when s(t) - sin cot one has 

t r      b \ 
y (t) - t - /   (a+jb sin cot) <t-at-^ -w (sin art - cot cos cot) > dt n ° l » J 



¥ 
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- t - — (a-a ) • 3 -» (1 - cos oat) - j ^* (cos cot • cot sin cot -1) 

- j -y (sin cot - cot cos cot) +  j -y (sin cot - cot cos cot) • 
co CO 

2 2 
+ b_    (t _ sin 2 cot) m   b    (oin 2 «t - 2 cot cos  2 cot). 

2a,2 2 W 

Another example is provided by the differential equation 

"*• • a(y • bjr)    -    A cos oat 
dt 

which describes the behavior of a circuit consisting of a nonlinear resistance 
in series with a linear inductance. If b^^l, one can proceed by iteration 
considering y as the limit of a succession and letting 

dyn 3 

  • ay - A cos cot - aby , 
dt     n n"1 

If y(o) - 0> one has 

C  -at     A      , ,   -x 
y„ -  — e   • —n—rr cos (cot - f; 
O t. c. 

a        a •oo 

where tan f - - , C - - -^-? cos -f 

Similarly, y, is the solution of the differential equation 

—i • ay.. - A cos cot - ab 1 - *"at • -A-, cos (cot - f) C 
dt     y *      a<W J 

ate, 

A different procedure for the solution of the given differential 
equation consists in transforming it first into the integral equation. 

.t 
y   -    - sin cot - a /   (y • by3) dt 

CO o 

This equation can be solved by iteration letting 

i 

m* 
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| 

7      -    ± sin tot - a ft  (y• by      3) dt 
n w 0 

n°-' n--L 

one has,  with the initial condition y(o) - 0: 

y     -   — sin cot 

etc. 

CO 

— sin cot - a y 
to o 

-A AN
3 3 — sin cot • b(—)    sin   tot 

CO CO 
dt 

•    — siii cot - —=• (1 - cos cot) - 
CO CO 

^ (*)   J 2 (l - cos cot) - *- (1 _ cos 3 «b) 
4   *    [w > 

- 
VI. Difference Equations and Methods of Numerical Integration 

Difference Equations 

• 

Difference equations have particular importance for nonlinear anaiy— 
3is because they are used in numerical methods and in some analytical pso- 
cedures of approximate integration} in addition, they are also used in de- 
scribing the behavior of on-off automatic control systems. Vfe shall limit 
ourselves here only to the treatment of lin»ar differenca equations. 

While in differential calculus, which deals with quantities varying 
continuously in a certain range, one defines the differential operator 
D « d/dt and the successive operators D^, ... D11, .. in the calculus of finite 
differences, which deals with quantities varying discontinuously in a certain 
range, one defines the difference operator 

iy„ - y, n+l - y. 

, 

and the successive difference operators 

Jl k2 k2 
*    yn " * y^l - A 3T V '**n    " Ar^*l-Aryn 

In terms of A one defines also the operator E • A • 1, which satisfies the 
following operational relations 

uC 



v% 

R-3UO-53, PIB-275 33 

m 

I 
i 

i 

E yn " >W    S"A W y„, ... E   y   - £ y^T - y_9,   etc. n' rn*l      Jn+2' 

Linear analytical relationships among variables of two corresponding sequences 
are expressed in form of difference equations of type 

QU) yn   -   ?U) \ 

where P(/0?  Q(A) are polynomials in t of type 

(5?) 

of U) - bo r * ^ & n-l 
• b. n 

P(A)    -    a0A    * ^ t       ""•"> + am 

and ?n represents a sequence of known values.    The gduax-al solution of equation 
(59) can be expressed as sum of the solution of the homogeneous equation ob- 
tained from (59) by letting P(A) " 0, and a particular solution of (59).    The 
solution of a homogeneous difference equation of type 

(bQ t
T * \ A1""1* .. • br) yn    -    0 

has the form 
-        rn 

^n  -  I! Ai • 
r 

iTl 

(60) 

(61) 

where the values of f± are the roots of the transcendental equation obtained 
introducing (61)  into (60).    One can also express Eq.   (60) by means of  the 
operator E and obtain a relationship of type 

by       • b    ,  y       ,•..,. •by     -0 r Jn+r       r~l Jn*r=l o Jn 

The solution of the latter equation has the form 

r 

(62) 

n £A^" 
where *»,   are the roots of the auxiliary equation 

b„^r • ... + b      •    0 r o 

Because Eq. (59) has been assumed to be linear, the principle of superposition 
applies. Accordingly, it is possible to express Its solution by means of an 
Integral expression similar to the integral of Duhamel. For this purpose, one 
defines the unit step sequence un as 

;t 
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••• 

u   - 0     for n - 0 

u n 

and the unit impulse sequence v 

(63) 
u - 1  for n »• 0 n 

nee y n - A \ as 

u« n - t ^-0 for n + o 
u' n - 1 n - 0 

(6U) 

Then by application of linear superposition, one can express any bounded func- 
tion yn in terms of unit step or unit impulse sequence as follows: 

n 

*n- *<> ""*£ u 'r    n-r (65) 

• 

. 

- ; 

or 

Since 

n 
y   "  ^>     y   u' 'n       Z-. Jr     n-r 

u_ n-r E"rV      »'n-x E"r u' 

equations (7) and (8) can be written respectively 

n 

••-[ y   + 'o Ayr B 

\ 7o * * yl E_1 * A 72 E"    *  *••1    un    "    y^)^ 

y   * 'n y   E~r u' 'r n •[ y„ * ?i s"1 • •J 
u' n 

—*     /v\     ... 

(66) 

(65') 

The coefficients of Y(E)  and of I (E) can be read directly from a graph of the 
sequence yn versus time. 

If we now indicate with k^ and Qn., respectively,  the solutions of 
Eq.  (59) for vn «* un and vn - u'n>  the general solution of the same equation, 
can be written as follows t 

rn   -    [V   £   **r**]\> (67) 
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v 

yn  - XI ?r £"r Gn (68) 

The functions An and Gn are particular integrals of Eq. ($9) which can be 
written symbolically 

Q(A)  n 

0(6)   n 

By long division, letting &  - E -1, and assuming that m<n, one has: 

ail . •."*>"* i<-"** s .c .,rl.C2B-2  
13U)    b0(E=l)

n • b^E-l)11"1 •....• bR 

Therefore, An and Qn can be evaluated and expressed in the forms (6$') and 
(661), respectively. From these expressions one obtains the general solution 
yn corresponding to the arbitrary sequency vn. However, the latter can also 
be obtained more directly by letting vn - V(E).Un or vn - V*(E).U'n in Eq. (59). 
One has respectively 

y, n 
. P(E°1).V(E) u 

Q(E-1) 

. P(E-1).V*(E) u- 

Q(E-l)      n 

Numerical Integration 

One of the simplest methods of numerical integration is based on 
direct use of Taylor's  series.    Given 

y! -    f(x,y) (69) 

with y(xo) - y0 one fiist evaluates from (69) y'(*<>)• Now differentiating 
Eq. (69) successively one evaluates y°', y''', etc., and correspondingly, 
y'"(*O)J y1'"' (*o)$  et'-° There follows, choosing h small enough, 

h2 
y(x1) - y(xo+h) - y(xo)*hy'(xo)+ S_ y"(xo)* .... 

h2 

y^) - y8Uo+
h) " ys(xc>hyM(x0)+ f-y"'(x0)

+ •••• 
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Having obtained y(x]_) and y' (x±)  one evaluates from Eq. (69) similarly y"(xi), 
y11'^), etc., and obtains y(x2) -=. y(x^ • h). The process is repeated until 
the required solution is obtained. A check on the accuracy of the computations 
is made by adding separately the terms of odd power and those of even power of 
e&ch series. Then, if the series corresponds to x * xn. the sum of these two 
results gives y(xn+-i) and their difference gives y(xn -,}. The latter value 
should coincide with the value previously calculated,"and provides an indica- 
tion of the error and a correction term. 

In particular the method of Euler as applied to the differential Eq. 
(69) consists in using a Taylor expansion limited to the linear term, i.e., 

y(V - y(x ) • (&)  . h 
« n-l 

An improved value of (-=*-)   is found at each st«p by multiplying h by the 
d* n-l 

average of the values of (dy/dx) at the ends of the interval xn_^, x , i.e., 

1 

2 
( 
dx 

)   • (&)  I 
n-l   <* n J 

1 

" 

A simplified procedure of numerical integration is obtained replacing 
dy/dx in Eq. (69) by an approximating polynomial and then integrating this over 
any desired interval. For this purpose, one uses the formula of Newton 

2 3 
y«   - y«   *t y1   u+  L y'n di2«-u)+  L 7'n (u3*3u2+2u) • n n 2 6 

AV 
(70) 

2U 
£ (uU+6u3*llu2+6u). 

< 

where u Wx-Xnyh,  and A    are difference operators of order n.    Integrating 
Eq.  f?tf) over the intervals x   ~ x    ,.x   .  i x ,  etc., one obtains various x    ' n       n*l"    n-l       n 
formulas for integrating ahead or for checking and improving previously cal- 
culated values.    For example, one has 

r n+1     , , 
/ y'dx yn    2     

r n    12 n   8 n   720 *J 
(71) 

/n   y'dx - h 

'n-l 

,  .. i A,y.  . L. A
2y  - i- AV  . _19 AU , 

n    „ ° J n    ,„ojrn    „,   B/n    -«rt 
M ' n    2U 720 '•] 

J. 6. Scarborough, Numerical Mathematical Analysis, The John Hopkins Press, 
1950, p. 23U. 



r 

H-3UO-53, PIB-275 3? 

In order to use these formulae one n«eds to start the solution; since the 
starting values must be very accurate, this part is usually very laborious. 
The most connon method ussd to start Uia solution is based on the use of 
Taylor's series, as already described. 

The approximate numerical solution of a differential equation can 
also be obtained by replacing directly the equation with its equivalent dif- 
ference equation. To do this, one observes that by application of Taylor's 
series for h small enough 

yix+h) - Tl+hD* j- D2*... ] y(x) - eMh(x) 

and similarly in finite differences 

yO^+h) - h(xn+1) - Ey(xn) - ^Yi^) 

2 
l 

2! 

There follows 

E -  a*0 - l*hD» £-D2+... 

and 

-i*.-i&«w)-j|[.-f. ?- 
,-n An approximate representation of Eq= (?2) in terms of E~ is 

=n 
D - 

E 
h  Pn(E

Ql) 

,-1^ 

(72) 

(73) 

whore Pn(E ) is a polynomial of degree n, whose coefficients might be ob- 
tained by substitution. For instance, it is found 

n'- 1 D sr 2 x E 
h 1 • E° 

n - 2 D r 3      1 -. E"2 

R  i 4- no -r a 

n - 3 
3h 1 + 3E' 

»-J 

 15 T? 
• 3E  • E •> 

6 

The errors of these expressions depend upon the third, fourth and fourth 
difference, respectively. Another less accurate representation of D which 
is often used is from (1U) 

D tf A 
h (7U) 



R-JUO-53, PIB-275 36 

Given a differential equation 

Q(D)y   -    P(D)T(t) 

one writes 

- EM 
Q(C) 

T(t)   -  ?(D).v(t) (75) 

and replaces the powers of D with the corresponding approximate expressions in 
E"n. If the highest order of D is m^ the approximate expression used for D 
should be accurate to the m-th difference.** 

For example, consider the differential equation 

(D • 1) y - u(t) 

One has 

y - 
1*D 

u(t) - 

h i+g-1 

u n 

1 • E 
'n u n 

2+h=(2-h)E * 

This expression can be evaluated by means of continuous division. 

The application of the previous methods to differential equations of 
higher order presents no difficulty since these can be readily transformed into 
a system of equations of first order. 

The solution of difference equation can also be obtained by means of 
the so-called relaxation method.*    The difference equation (given or obtained 
by transformation from a differential equation) is written preferably in the 
form (62),  i.e.$ 

by       • b    .,  y        , r 'n*r        r=l 'n+r=l • by o *n -    0 \ — / 

This equation connects sets cf r consecutive points. We might assume, for 
example, that y represents values of potential in a region with given boun= 
daries. To begin with, one selects a rather wide square net covering the 
given region, and whose intersection points are the values xn. One fills the 
entire area with guessed^at values of y, and as a result the application of 
the Eq. (62) now will provide a residual different than zero, i.e., 

b y 
r •'n+r *  br-l W-l * o "n R(n) (76) 

E. Weber, Electromagnetic Fields, Theory and Applications, J, Wiley, 1950, 
p. 260. 

«* Milne-Thomson - Calculus of finite differences, London, 1923. Brown, B.M. - 
Math. Gasette 30 (19U?), H5- 
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For the exact solution R^n) should be rarc^ and its actual value depends upjn 
the initial value yn assumed. Any correction at n will affect the residuals 
at all its neighbor points as well. It requires therefore some little ex- 
perience to estimate the corrections needed, and it is generally preferable 
to note next to the a3sumsd values yn the residuals in brackets. One will use 
the distribution of the residuals for the second estimate,, It is important to 
note that the procedure is definitely a convergent one even if one starts from 
a rather crude first guess. Good results are recorded by Strutt* for electron 
tube problems. The csthod is illustrated in Cosslett** and Zvorkyn, et al*** 
for electron optical problems and in Southwell**** for tha magnetic flux dis- 
tribution in a generator; many applications have been made to elastic and heat 
problems. 

M. J. 0. Strutt, Ann. d. Physijc 87, ?. l£3 U928).  M. J. 0. Strutt, 
Moderns Mehrgitter-electronenrohren, Vol. 2, J. Springer, Berlin, 1938. 

V. E. Cosslett, Introduction to Electron Optics, Oxford University Press, 
England, 19U6. 

V. K. Zworkyn, et al, Electron Optics and the Electron Microscope, J.Wiley 
and Sons, 19hi>. 

R. V. Southwell, Relaxation Methods in Theoretical Physics, Oxford Univ. 
Press, 19U6. 
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